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ABSTRACT
This paper presents recent work on developing methods
for analyzing radiation heat transfer between diffuse-
gray surfaces using p-version finite elements. The work
was motivated by a thermal analysis of a High Speed
Civil Transport (HSCT) wing structure which showed
the importance of radiation heat transfer throughout the
structure. The analysis also showed that refining the
finite element mesh to accurately capture the
temperature distribution on the internal structure led to
very large meshes with unacceptably long execution
times.

Traditional methods for calculating surface-to-surface
radiation are based on assumptions that are not
appropriate for p-version finite elements.  Two methods
for determining internal radiation heat transfer are
developed for one and two-dimensional p-version finite
elements.  In the first method, higher-order elements are
divided into a number of sub-elements. Traditional
methods are used to determine radiation heat flux along
each sub-element and then mapped back to the parent
element.  In the second method, the radiation heat
transfer equations are numerically integrated over the
higher-order element.   Comparisons with analytical
solutions show that the integration scheme is generally
more accurate than the sub-element method.
Comparison to results from traditional finite elements
shows that significant reduction in the number of
elements in the mesh is possible using higher-order (p-
version) finite elements.

INTRODUCTION
Background
One of NASA’s main goals is to provide the United
States’ Aeronautics Industry with the technology it
needs to lead the international aerospace industry into
the next century. This includes developing enabling
technologies, one of which is to “provide next-
generation design tools and experimental aircraft to
increase design confidence, and cut the development
cycle time for aircraft in half.”[1] This paper presents
initial work on one of these tools, methods for accurate
thermal analysis of aircraft structures.  The goal of this
work is to enable thermal analysis of large-scale
components or full aerospace vehicles on a mid-level
workstation.

NASA sponsored several projects aimed at reducing
barriers to commercially viable high-speed civil and
space transportation.  The High Speed Research (HSR)
Program had a goal “of reducing the travel time to the
Far East and Europe by 50 percent within 20 years, and
to do so at today’s subsonic ticket prices.”[1] These
aircraft will experience higher in-flight temperatures
due to the increased rate of aerodynamic heating
associated with high-speed flight.  The Reusable
Launch Vehicle (RLV) program’s goal of “reducing the
payload cost to low-Earth orbit by an additional order
of magnitude” [1] challenges designers to come up with
both materials and structural concepts that can
withstand the reentry environment while minimizing
the weight of the vehicle.  RLV designs are single-
stage-to-orbit vehicles that use cryogenic propellant.
The propellant tanks are an integral part of the vehicle
structure, which, in addition to holding the cryogenic
fuel, must withstand the elevated temperatures
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associated with the reentry.  In addition, these materials
must also withstand the thermal and structural cycling
of repeated flights.  Many of the materials that can
withstand the elevated temperatures of high-speed flight
do not have high thermal conductivity to efficiently
dissipate the heat throughout a structure.  Thus other
modes of heat transfer, radiation in particular, become
more significant.[2]  The importance of radiation heat
transfer as well as the difficulty involved in its
modeling was demonstrated by Ko et al. [2] in their
work on the Space Shuttle thermal analysis.  These
issues are directly applicable to the design of high-
speed commercial aircraft as well as the RLV.

NASA’s Space Program also has an interest in
improved methodologies for radiation heat transfer.
Besides the access to space issue mentioned above,
radiation is a dominate mode of heat transfer in most
orbiting space structures and satellites.  Chin et al. [3]
discuss some of the problems associated with thermal
modeling of spacecraft, and in particular the problems
associated with computation of radiation heat transfer.
One of the problems highlighted in reference 3 is the
assumption of isothermal, constant radiation heat flux
surfaces used in most radiation computations.  This
assumption tends to under-predict the temperature
gradients in the structure.  In addition, the assumption
of constant radiation heat flux over an element may
degrade the accuracy of the calculated temperature field
especially where partial shading (blockage) occurs.

The desire for better tools led to an initial study of the
heat transfer in a High Speed Civil Transport (HSCT)
wing. The study confirmed the significance of radiation
in the heat transfer throughout the vehicle’s wing
structure.  The study also demonstrated the relative
difficulty of such an analysis, especially when the
ultimate goal is to compute the temperatures throughout
the whole wing without reverting to reduced models.  A
summary of this study is given in the following section.

Case Study: High Speed Civil Transport Wing
Thermal Analysis
As part of the HSR Program at NASA Langley
Research Center (LaRC), a thermal analysis of a HSCT
wing was undertaken.  The purpose of the analysis was
to determine the capabilities of the methods currently
used for thermal analysis of aerospace structures and
determine what, if any, areas of improvement were
required.

The wing geometry model used for the thermal analysis
is shown in Figure 1.  The wing is approximately 113
feet long at the root and 55 feet wide at the trailing
edge.  The wing skin was assumed to be constructed of

hat-stiffened corrugated panels made from titanium.  To
model the three-dimensional hat-stiffened skin with
two-dimensional elements, equivalent properties
(density, capacitance, and thermal conductivity) were
derived.  For simplicity, this construction was also used
for the internal ribs and spars.

Figure 1: HSCT wing geometry model.

A five-hour flight trajectory, representative of a
commercial airline or transport route, was used in the
analysis.  The majority of the trajectory, 3.8 hours,
consisted of a mach 2.4 cruise at an altitude between
60,000 and 70,000 feet.  Aerodynamic heating rates
were determined using LANMIN, NASA Langley’s
version of the MINIVER computer code which uses
engineering relations to calculate the aerothermal
heating (or cooling) to surfaces.  The heating rates
applied to the upper and lower wing surfaces were
generated by MINIVER for each element in the mesh
using flat plate boundary layer relations based on the
element running length and local flow angle.
MINIVER used inviscid flow relations to obtain the
undisturbed flow conditions behind the bow shock off
the fuselage nose and wing leading edge.

Structural temperatures of the wing throughout the
trajectory were computed using MacNeal-Schwendler
Corporation’s P/Thermal1 [4] software on a Silicon
Graphics Workstation with an R4000 CPU, 96 Mbytes
of memory and one Gbyte of disk space.  The initial
mesh consisted of roughly one element for each
geometry surface shown in Figure 1 resulting in 154
nodes and 237 elements.   Solutions obtained for this

                                                          
1 The use of trademarks or names of manufacturers in
this report is for accurate reporting and does not
constitute an official endorsement, either expressed or
implied, of such products or manufacturers by the
National Aeronautics and Space Administration.
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mesh both with and without internal radiation showed
very little difference in temperature distribution.  Note
however that all the nodes in this model are located on
the wing surfaces (at the intersections of the lines in
Figure 1) where the heat transfer is dominated by the
aerodynamic heating.  Thus all the computed
temperatures respond very quickly to changes in the
aerodynamic heating rates.  The lack of nodes along the
internal structure, where temperatures are not directly
affected by the aerodynamic heating and thus respond
slower, results in a misleading temperature distribution
for the wing structure.

 
Figure 2: HSCT wing, refined mesh and
temperature contours (Temperatures in °F).

A second analysis was performed with a mesh refined
to have elements with edge lengths of 18 inches on both
the internal structure and wing surfaces.  This mesh size
was driven by the desire to have at least two elements
across the height of the internal structure while keeping
the overall size of the model within reason.  The mesh,
which consisted of 3624 nodes and 4037 elements, is
shown in Figure 2 overlaid on a contour plot of the
lower surface temperature at the beginning of cruise.
The solution shown in Figure 2 did not include internal
radiation heat transfer because the view factor
calculation never ran to completion.  It is also
interesting to note that the view factor computation
required over 600 Mbytes of disk space before
crashing!  Neglecting internal radiation resulted in a
peak internal temperature of less than 150°F and a
temperature gradient of 220°F across the internal
structure at the beginning of cruise.   The large
temperature difference between the external and
internal structures raises the possibility of significant
radiation exchange.

The problems with the view factor calculation as well
as the desire to get a more detailed temperature
distribution for the internal structure led to the
development of a wing box model.  This model allowed

for a more detailed analysis of a smaller section of the
wing, in this case a box defined by adjacent ribs and
spars and the corresponding upper and lower surface
sections.  Solid elements with equivalent properties
were used for all sides of the box so that temperature
gradients through the thickness of the panels could be
determined in addition to the effects of internal
radiation.  The finite element mesh used for the wing
box thermal analysis is shown in Figure 3.

Figure 3: Finite element mesh used for the thermal
analysis of a wing box (Note node 957 is located on
the lower wing surface).

The model was first run without internal radiation and
the transient temperature response of the nodes labeled
in Figure 3 are shown in Figure 4.  Internal radiation
was added for the next run and the results are shown in
Figure 5.  These figures clearly show the significant
impact of internal radiation heat transfer on the
temperatures of the internal wing structure.  Ko et al.
have also shown the importance of internal radiation in
their work on the Space Shuttle[2].  Their results for the
in-plane temperature distributions for the upper and
lower surfaces suggest that higher order basis functions
might be well suited to this application.  This behavior
coupled with the difficulties encountered using
traditional methods lead to the idea of applying
hierarchical p-version elements to radiation heat
transfer in enclosures.
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Figure 4: Transient temperatures for wing box
model with no internal radiation.
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Figure 5: Transient temperatures for wing box
model with internal radiation.

FINITE ELEMENT FORMULATION
The finite element method and its application to thermal
problems is well established.  For the interested reader,
Huebner et al. [5] provides a detailed formulation of the
problem.  Here it will simply be noted that the approach
begins by subdividing the problem region into elements
and approximating the temperature in each element
with some function in the form of
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where Ni are interpolation functions and Ti nodal
quantities related to the temperature at time t.  The
corresponding finite element equations can be written
(see [5]):
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with r, cp, and k being the material density, specific
heat, and thermal conductivity, respectively.  Boundary
conditions included in the above definitions are:
specified heat flux qs on surface S1, convection on
surface S2 with a convection coefficient h and a fluid
temperature Tf, and net radiation heat flux qr on surface
S3.  Q represents any heat source or sink in the material.

In general, any given element in the solution domain
will not have all of the above terms.  For example, only
elements on the surface of the domain will have the
terms associated with the boundary conditions, and
even then they will only have the terms associated with
the boundary conditions that apply to the element.  The
terms are calculated individually for each element in the
domain and then assembled into a global system of
equations using traditional finite element techniques
[5].

Traditional methods for determining the radiation heat
transfer flux qr are based on the assumptions that
surfaces are isothermal and the incident radiant heat
fluxes on them are uniform.  The isothermal surface
assumption is inconsistent with finite-element
formulation since the temperature over the element
varies according to its shape function.  To minimize the
error introduced by this assumption, the mesh size must
be controlled to limit the temperature variation over an
element surface. This can lead to a large number of
elements for structures with large temperature variation
throughout. View factors will have to be computed
between all of these surfaces, a process that requires N2

computations for N elements.  Also, since radiation
links surfaces throughout a structure, matrices are no
longer sparse as they are with conduction problems.
Thus mesh refinement in a radiation heat transfer
problem can quickly become overwhelming as
demonstrated in the case study.    In addition, Lobo and
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Emery [6] report that with intense radiation heat fluxes,
methods employing low-order basis functions can
produce erroneous results.

An alternative to mesh refinement (h-refinement) is to
increase the order of the basis functions in the finite-
element formulation (p-refinement).  In a follow-up
report to their earlier work (cited above), Lobo and
Emery [7] demonstrate that the errors occurring under
intense radiation heat flux conditions are due to the
violation of the Discrete Maximum Principle.  They
show that one way to alleviate this problem is to use
higher-order basis functions along the surfaces of
radiating elements.   Surana et al.[8] have demonstrated
the effectiveness of  p-version finite element methods
for conduction problems, but they do not include
radiation.  Kuppurao and Derby [9] use linear and
quadratic basis functions for pure radiation problems
arising in crystal growth systems, and develop several
methods which do not rely upon the isothermal
assumption.   This work takes a slightly different
approach to implementing higher-order basis functions
and presents results for test problems representative of
the wing box analysis.

RADIATION HEAT TRANSFER WITH
HIGHER ORDER ELEMENTS

Fundamental to the accurate implementation of the p-
method in heat transfer problems with enclosure
radiation is the accurate computation of the radiant heat
flux qr, and it’s variation, over a surface.  The
governing equations for the radiant heat flux are of
integral form.  By assuming the surfaces are isothermal
with uniform radiant heat fluxes, these integral
equations can be separated into a set of integral
geometry equations (view factors) and net radiation
equations (algebraic set of equations).  Forgoing these
assumptions leaves a set of simultaneous integral
equations that must be solved.   Daurelle et al. [10, 11]
shows that solving the set of integral equations leads to
more accurate results even when using linear basis
functions for the temperature field.  Their work
indicates that the set of integral equations is slower to
solve for a given mesh; however, for a given accuracy
the set of integral equations is twice as fast as the
traditional approach using the isothermal surface with
uniform radiant heat flux assumptions.  Two methods
are developed here: the Radiation Sub-Element method,
which takes advantage of the well-developed traditional
methods; and the more accurate Integration method,
which solves a set of integral equations.

Radiation Sub-Elements (RSE)
The Radiation Sub-Element approach is the simplest
and most straightforward technique to implement
variable surface radiation.  Any code that can currently
handle surface-to-surface radiation can implement this
procedure without major modifications.  This approach
breaks the radiation elements into sub-elements for the
surface to surface radiation exchange problem.  These
radiation sub-elements are then treated in the classical
approach, i.e. assume that they are isothermal and then
calculate view factors and absorbed heat fluxes.  The
sub-element absorbed heat fluxes are then transferred
back to the parent element generating a variable
radiation heat flux along the element.  Several different
methods to approximate the varying heat load on the
element have been investigated.

A one-dimensional problem was used to determine how
accurately the absorbed heat flux should be modeled.
The energy equation for one-dimensional heat
conduction in a rod with an applied heat flux qp is:

Sxq
dx

Td
kA p )(

2

2

=

where

k is the thermal conductivity, A is the cross sectional
area of the rod, S is the rod's surface area, and qp is the
variable heat flux expressed as a polynomial in x.
Integrating twice gives the general solution:
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The point of interest here is that the temperature
solution is a polynomial of order p + 2, that is, it is 2
orders higher than the polynomial describing q.
Applying this to finite element analysis, given a shape
function of order m for the temperature distribution
along a rod element, the radiation heat flux should be
calculated to an order of  m − 2.

Five methods to transform the discrete heat fluxes on
the radiation sub-elements to a continuous function on
their parent element were investigated.   Two two-
dimensional test problems with one-dimensional
elements were solved using sixth order polynomials for
temperature interpolation function on the elements.
The radiation load vectors were calculated to fourth
order.  This required dividing each element into five
radiation sub-elements yielding five absorbed heat
fluxes for each parent element.  These five heat fluxes
were then integrated (numerically) with the shape
functions to generate the radiation load vector {Rr} in
equation 2.
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The first method models the heat flux along the element
as a step function.  This is consistent with the method
used for generating the heat fluxes (the classical
approach assumes the incident radiation to be constant
along a surface).  However, incident radiation does not
typically vary in this fashion, rather it is usually a
smooth function which may have significant variation
depending on the geometry involved.  (And if higher
order elements are being used for the analysis, there
probably are large variations along the element.)

The second method approximated the heat flux by
linearly interpolating between the five heat flux values.
The heat fluxes were placed at their sub-element
centroid for the interpolation process. This method
interpolates between two values when possible,
otherwise the closest value is used.  Values outside of
two element centroids (i.e., near the open ends of the
surface) are assigned the same value as the element
centroid.

A simple extension of the interpolation method is the
interpolation/extrapolation method.  As the name
implies, this method simply extrapolates the local heat
flux value when interpolation is not possible.  While
this method may lead to more accurate solutions in
many problems, it may also lead to problems if the
extrapolated values become unrealistic.

To improve the absorbed radiation heat flux
approximation a fourth order curve fit was implemented
next.  The five heat fluxes were located at their sub-
element centroid, and a fourth order polynomial was fit
to the points.

The final radiation heat flux approach uses cubic
splines.  Once again the question arises as to how to
best extrapolate the data when interpolation is not
possible (i.e. near the end points of an element).  Three
extrapolation methods for the cubic spline were
investigated.  The first approach, also called a natural
cubic spline, sets the second derivative of the curve to
zero at the end points.  This translates to a linear
extrapolation of the heat flux values and yielded the
poorest results.  The second method extrapolated the
data based on a constant second derivative.  This
significantly improved the results.  The third method
allows for a fully cubic curve at the end points and is
based on a linearly extrapolated second derivative. This
proved to be the most accurate of all the RSE methods,
and while no problems were encountered in testing, it
still extrapolates data and therefore is susceptible to the
problems associated with such operations.

Integration Method (IM)
Regardless of the approach used in the RSE method to
approximate the radiation heat flux on an element, the
approximation is based on data from the traditional
calculation procedures.  While this makes
implementation simple, it still suffers from the
assumptions used in developing the traditional
approaches, namely the uniform temperature and
uniform incident radiation assumptions (albeit they are
made on sub-elements).

To study the problem without making the above
assumptions consider an element k that is part of an
enclosure of N elements.  A heat balance at the point xk

on element k is:
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Equations 3  and 4 can be combined to eliminate the
surface irradiation term yielding:
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This equation relates the net surface heat flux to the
surface temperatures.  Note that it is a nonlinear integral
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equation and that to calculate the heat flux on surface k,
the surface heat flux on all other surfaces must be
known in addition to the temperatures of all surfaces
(including surface k).  While this might seem a bit more
complex, recall that an iterative solution technique is
generally required to solve the nonlinear finite element
equations.  Thus, the temperatures and heat fluxes from
the previous iteration values can be used on the right
hand side of equation 6.

There are several ways to evaluate equation 6, but
doing it numerically will only give a single value at
some point xk.  Thus to obtain a function qk(xk), some
approximation method similar to those shown in the
RSE method is required.  But the radiation heat flux is
only used to calculate a load vector {Rr}, where it is
multiplied by the element shape function and integrated
over the area of the element.  If this integration is done
numerically, the heat flux does not need to be a
continuous function; it only needs to be evaluated at the
points defined by the numerical integration scheme.

The approach taken here is to evaluate the radiation
load vectors using Gauss Integration.  Thus the heat
flux on an element only need be determined at the
Gauss points along the element.  Also, by using the
same integration scheme to evaluate the integrals in
equation 6, no approximating function qk(xk)  is
required.  The following steps are used to determine the
radiation load vector for this solution method:

1. Initialize unknowns (temperatures and
radiation heat fluxes).

2. Calculate differential form factors
between Gauss points on all elements.

(Begin iteration)

3. Calculate radiation heat fluxes at Gauss
points on all elements.

4. Integrate radiation heat fluxes to obtain
radiation heating load vector.

5. Solve for and update temperatures.

6. Check convergence and repeat iteration if
necessary (go to step 3).

APPLICATION
Two-Dimensional Test Problems
To investigate these techniques, two simple test
problems were developed.  The test problems involve
two one-dimensional elements in radiative equilibrium.
The first test problem, shown in Figure 6, represents
heat transfer in the corner of a rectangular enclosure.

The two elements are oriented at right angles with each
other and share a common end point location (there is a
separate node at this location for each element). The
vertical element is held at a constant temperature of
1000°R and the horizontal element is allowed to come
to radiative equilibrium.  The horizontal element’s
length was set to 5 times the vertical element length in
order to allow a reasonable temperature gradient to
develop along the element.  Both surfaces were
modeled as black bodies so that an exact solution could
be found.

T = 1000oR

5L

L
x

Figure 6: Schematic of test problem 1.

The second test problem is shown in Figure 7.  This
problem considers two parallel black plates each of
length L separated a distance d apart.  Once again the
top plate was held at a constant temperature and the
other plate allowed to come to radiative equilibrium.
Results presented here are for a d/L ratio of 0.1.

T = 1000oR

L

d
x

Figure 7: Schematic of test problem 2.

Results
Radiation Sub-element Method

Results for test problem 1 using the RSE methods are
shown in Figure 8.  Results for all the methods of
approximating the radiation heat loads are shown along
with the exact solution.  Although the step function
method is consistent with the isothermal/uniform heat
flux assumption used to generate the heat flux data, the
resulting temperature prediction was poor with the error
approaching 20% at the element end points.

Results of the interpolation method are slightly better
than the step function results; however, both methods
significantly under-predict the peak temperature at x/L
= 0.  The problem here is that the incident heat flux is
rising rapidly (x/L = 0 corresponds to the corner
location).  Both the step function and linear
interpolation methods model the heat flux as constant in
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this area (step function holds the value constant from
x/L = 0 to 0.2, linear interpolation function holds the
value constant from x/L = 0 to 0.1) and thus under-
predict the actual temperature.  Extrapolating the data
near the endpoints improves the results considerably
cutting the error at these locations by approximately
50%. The extrapolated heat flux values still under
predict the actual heat flux values near x/L=0, and over
predict the actual heat flux values near x/L=5.

300
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0 1 2 3 4 5

x/L

step function linear interp.

interp/extrap 4th order cf

cubic spline exact

Figure 8: Results for test problem 1.

The fourth order curve fit gives excellent results over
most of the element; however, there is a significant
error in the temperature at x/L of 5.  This behavior is
due to the nature of the fourth order polynomial defined
by the 5 heat flux values.  While the actual radiation
heat flux for this problem continues to decrease slowly
as x/L approaches 5, the polynomial fit begins to
increase here.  Several approaches could be
implemented to avoid this problem; however, while
extrapolating the results is causing errors at x/L=5, it is
helping yield a better answer at x/L=0.   One approach
that would certainly improve the results for this case
would be to subdivide the element into additional
radiation sub-elements and use a curve fit to smooth out
the polynomial.  The problem here is the additional
computations required for the new sub-elements.

Finally, the cubic spline curve fit gave the best overall
results.  The results shown in Figure 8 are for the fully
cubic spline.  The temperature results show good
agreement over the whole element with the largest
errors occurring near x/L=5.

In general all the approximation methods suffer near the
endpoints, regions where the data must be extrapolated.
These methods may be improved by calculating the
heat flux at the endpoints of the element.  This would
require computation of radiation heat fluxes at points,
as opposed to finite surfaces.  The traditional methods
used to calculate the heat fluxes on an element would
have to be modified to handle both finite areas as well
as points; however, this complication is only minor and
may well be worth the additional effort.  Another

consequence which might prove more significant is that
the interior points would be farther apart (assuming
only 5 points) possibly increasing the approximation
error in the interior of the element.
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Figure 9: Results for test problem 2.

Figure 9 shows the results of these methods applied to
test problem 2 along with the exact solution.  The
results are similar to those from test problem 1 with the
cubic spline curve fit method giving the best overall
results.  To quantify the overall performance of the
various methods, the following error indicator was
calculated for each method:
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∑ −
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where TFE is the temperature from finite element
calculation, Texact is the temperature from the analytical
solution, and i indicates the number of the ith data point
shown in the figures (total of 21points)

This error indicator is shown in Figure10 for test
problem 1 and in Figure 11 for test problem 2.  As
expected the cubic spline curve fit has the lowest error
indicator value.
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Figure 10: Error indicator for test problem 1.
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Figure 11:Error indicator for test problem 2.

Integration Method
The results for test problem 1 using the integration
method are shown in Figure 12.  The figure shows
results using a 7 Gauss point integration scheme, which
performs so well that it is difficult to distinguish
between the integration method and the exact solution.
The results for the cubic spline radiation sub-element
method are also included to gage how well the
integration method performs against the best radiation
sub-element method.  The integration method has
nearly an order of magnitude reduction in the error
indicator.
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Figure 12: IM vs. RSE results for test problem 1.

Results for test problem 2 are shown in Figure 13.
Once again results for the cubic spine radiation sub-
element method are included for comparison.  Note that
the integration method slightly over-predicts the
temperature at the center of the element while the
radiation sub-element method slightly under-predicts
the temperature there.  The integration method used 16
Gauss points to obtain this solution, significantly more
than was necessary for the first test problem.  This
higher accuracy scheme was necessary because of the
geometry associated with test problem 2, namely large
surfaces separated by a small distance.  This is a

common problem in radiation heat transfer and view
factor calculations and is discussed in many view factor
references.
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Figure 13: IM vs. RSE results fro test problem 2.

Several additional finite element analyses were
performed to compare these methods to traditional
methods for computing radiation heat transfer.  Each
test problem was analyzed using the traditional finite
element approach–linear shape functions for the
temperature field with the radiation heat flux assumed
constant over each element.  Each surface was
subdivided into a number of linear elements and the
mesh was refined until the error indicator was reduced
to the level produced by the higher-order methods.
Table 1 lists the number of linear elements required to
match the solution accuracy of the new methods.  The
traditional approach required 10 elements for test
problem 1 and 17 elements for test problem 2 to match
the error indicator for a single element using the cubic
spline radiation sub-element method.  Similarly, the
traditional approach required 46 elements for test
problem 1 and 42 elements for test problem 2 to match
the error indicator for a single element using the
integration method.  These traditional analyses were
carried out using a totally separate computer code
previously developed by the author.  This code had very
little similarity to the code used to develop the higher
order methods, so no attempt was made to compare the
computational costs (run times) for the methods.

Table 1: Number of linear elements required to
match the accuracy of a single p = 6 element using
the RSE and IM methods.

Test
problem

Radiation sub-element
method

(cubic spline curve fit)
Integration

method
1 10 46
2 17 42
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Three-Dimensional Test Problem
Based on the results from the two-dimensional test
problems, the cubic spline curve fit RSE and integration
methods were implemented in a three-dimensional
finite element code.  The test problem for this case,
shown in Figure 14, consists of two parallel six-inch
square plates separated by a distance of six inches.  The
top plate is held at 1000°F and there is no conduction in
either plate.  The emissivity of both plates is 1.0 so that
the analytical solution could be obtained:

[ ]
4
1

6

0

6

0
222 36)()(

36
1000),(












∫ ∫

+−+−
= ydxd

yyxx
yxT

π

A surface plot of this solution is shown in Figure 15.

A slightly different method was used to measure the
accuracy of the solutions for this test problem so that
comparison with h-refinement could be made.  The L2

norm of the error for element K is:

dydxTTe K elementfiniteanalyticKL ∫ −= 22

)(
)(2

The error for the problem is found by taking the square
root of the sum of all the element errors in the domain
Ω:

∑=
Ω K KLL

ee
2

)(

2

)( 22

Solutions for this problem were generated using h-
refinement with the traditional radiation approach
(isothermal surfaces with uniform radiation heat flux);
L2 norms for these cases are shown in Table 2.  The
amount of mesh refinement was limited by limitations
in the view factor software; however, the cases
presented give a good indication of how quickly the
error drops with h-refinement.  Results for the radiation
sub-element method are presented in Table 3.  The data
indicate that increasing the interpolation function gives
more accurate solutions for a given number of degrees
of freedom.  However, the integration method provides
the best accuracy as the data in Table 4 show.  Only the
even polynomial results are presented because the
solution is an even function, and the odd polynomials
do not improve the solution accuracy.  Note that using a
single element with a polynomial of order 2 (in each
direction) with the integration method provides a
solution more accurate than any of the other
approaches.  For nine degrees of freedom, the h-
refinement L2 error norm is 19.45, the radiation sub-
element method with nine degrees of freedom has an L2

error norm of 1.97 and the integration method with nine
degrees of freedom has an L2 error norm of 0.23.  In all
cases, for a given number of degrees of freedom, the
integration method produces the lowest error followed

by the radiation sub-element method with the h-
refinement method giving the largest error.
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Figure 14: Parallel plates under radiation
equilibrium conditions with the lower plate held at a
uniform temperature.
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Figure 15: Analytical solution for 3-D test problem.

Table 2: Error norms for h-refinement using the
traditional radiation method.

Number of
p=1 elements

Number of
degrees of
freedom

L2 error
norm

1 4 19.4522
4 9 19.4522
9 16 9.74385

16 25 6.51942
25 36 4.65848
36 49 3.56349
49 64 2.83546
64 81 2.32688
81 100 1.95422

100 121 1.67149
400 441 0.59645
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Table 3: Error norms for p-refinement using the
radiation sub-element method.

Order of
element (p)

Number of
degrees of
freedom

L2 error
norm

1 4 19.4522
2 9 1.96614
3 16 1.10128
4 25 0.73404
5 36 0.52810
6 49 0.40612

Table 4: Error norms for p-refinement using the
integration method.

Order of
element (p)

Number of
degrees

Of freedom

L2 error
norm

1 4 19.4547
2 9 0.23185
4 25 0.00789
6 49 0.00081

CONCLUSIONS
Two methods for determining internal radiation heat
transfer have been developed for higher-order finite
elements. The first method divides the higher-order
element into a number of sub-elements, calculates the
radiant heat flux on the sub-elements using traditional
methods, and then curve fits this data to determine the
radiation heat flux along the higher-order parent
element.  The second method numerically integrates the
radiation heat transfer equations over the higher-order
element using an efficient Gaussian integration scheme.
Comparisons with analytical solutions show that the
integration scheme is generally more accurate than the
sub-element method.  Comparisons of these results to
those of traditional linear finite elements demonstrate
the potential for improved computational performance
given a required level of accuracy.
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